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Abstract

Background: Earlier versions of biofeedback systems for balance-related applications were intended primarily to provide
“alarm” signals about body tilt rather than to guide rehabilitation exercise motion. Additionally, there have been few
attempts to evaluate guidance modalities for balance rehabilitation exercises. The purpose of this proof-of-concept
study is to evaluate the effects of guidance modalities during common dynamic weight-shifting exercises used in
clinical settings.

Methods: A motion guidance system providing visual biofeedback, vibrotactile biofeedback, or both, was used during
weight-shifting exercises. Eleven people with idiopathic Parkinson’s disease (PD) and nine healthy elderly people
participated. Each participant wore a six-degree-of-freedom inertial measurement unit (IMU) located near the sacrum
and four linear vibrating actuators (Tactors) attached to the skin over the front, back, and right and left sides of the
abdomen. The IMU measured angular displacements and velocities of body tilt in anterior-posterior (A/P) and
medial-lateral (M/L) directions. Participants were instructed to follow a slow moving target by shifting their weight
in either the A/P or M/L direction up to 90 % of their limits of stability (LOS). Real-time position error was provided to
participants in one of three sensory modalities: visual, vibrotactile, or both. Participants performed 5 trials for each
biofeedback modality and movement direction (A/P and M/L) for a total of 30 trials in a random order. To characterize
performance, position error was defined as the average absolute difference between the target and participant
movements in degrees.

Results: Simultaneous delivery of visual and vibrotactile biofeedback resulted in significantly lower position error
compared to either visual or vibrotactile biofeedback alone regardless of the movement direction for both participant
cohorts. The pairwise comparisons were not significantly different between visual and vibrotactile biofeedback.

Conclusion: The study is the first attempt to assess the effects of guidance modalities on common balance rehabilitation
exercises in people with PD and healthy elderly people. The results suggest that combined visual and vibrotactile
biofeedback can improve volitional responses during postural tracking tasks.
Index Terms – sensory augmentation, weight-shifting balance exercise, guidance modality, vibrotactile biofeedback, visual
biofeedback, Parkinson’s disease.
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Background
Parkinson’s disease (PD) affects at least 10,000,000
people worldwide [1]. The cardinal motor systems are
tremor, bradykinesia, rigidity, and postural instability [2].
Dopaminergic medication and surgical treatment (e.g.,
deep brain stimulation) have been shown to suppress
the symptoms of tremor, bradykinesia, and muscle rigid-
ity [3–6], but does not prevent the progression of the
disease [7]. The treatments are not as effective in treat-
ing postural instability [8, 9], which increases loss of bal-
ance [10] and risk of falling [11], thus restricting motor
performance and reducing the level of independence in
daily activities [12].
Several studies have shown that physical and balance re-

habilitation regimens can improve postural stability in
people with PD for short (hours to days) and long (weeks
to months) periods [13–17]. Recently, Smania et al. [13]
evaluated the effect of intensive balance training sessions
on postural stability in 64 people with idiopathic PD
during conventional balance training (e.g., dynamic
weight-shifting balance exercise and destabilization of the
body’s center of mass (COM)) under the supervision of a
physical therapist. The results demonstrated that postural
stability and confidence improved and fall events decreased
after balance training was completed, and that the training
effects lasted for at least 1 month. However, many balance-
impaired people with PD cannot perform clinical balance
training regimes due to cost, limited availability of physical
therapists [18, 19], or memory loss [20, 21]. Moreover,
when given exercises to practice at home, compliance gen-
erally decreases over time due to the absence of real-time
feedback [22–24]. For these and other reasons, there is
growing interest in assistive device design and development
with sensory augmentation.
Sensory augmentation, popularly called biofeedback, is a

technique of augmenting or replacing compromised sen-
sory information through external cues to facilitate the
retraining of sensorimotor functions (see [25] for review)
during rehabilitation. Utilizing visual [26, 27], auditory
[28, 29], or tactile cues [30–35], biofeedback technologies
provide additional information about body motion. Among
the aforementioned biofeedback modalities, vibrotactile in-
formation as a means of touch input can be used to mimic
the role of a therapist’s hands by providing somatosensory
information for movement corrections [36–38]. A number
of studies have demonstrated that wearable vibrotactile
biofeedback systems improve balance performance in
anterior-posterior (A/P) and medial-lateral (M/L) direc-
tions in people with vestibular deficits [31, 32, 39], older
adults [30, 33, 39] and people with PD [34, 40]. The results
showed that improved postural performance was observed
over short periods of time (hours to days) after a small
number of sessions (e.g., two sessions, 3 h each) with real-
time vibrotactile balance aids.

Most vibrotactile biofeedback systems are designed to
send “alarm” signals about body tilt rather than to pro-
vide guidance for correction of performance errors while
performing exercises. In addition, the effects of guidance
modality on balance-related exercises have not yet been
studied (e.g., whether one biofeedback modality is more
effective than another, combining visual and vibrotactile
biofeedback to leverage voluntary motor control during
rehabilitation exercises, etc.).
Motivated by the need to improve clinical and in-home

exercise regimens, we propose a wearable guidance system
for dynamic weight-shifting exercises. We 1) describe the
system design to convey guidance information for dy-
namic weight-shifting exercises and 2) quantitatively
assess the effects of guidance modalities (visual vs. vibro-
tactile vs. simultaneous visual and vibrotactile biofeed-
back) during dynamic weight-shifting exercises in PD and
healthy elderly people. The eventual goal is to design a
system for use by balanced-impaired people performing
therapist-assigned exercises in a clinic, at home, or in an
environment with limited access to balance therapy.

Methods
Wearable guidance system for dynamic weight-shifting
exercises
Figure 1 illustrates the key components of the biofeed-
back system: a commercial six degree-of-freedom inertial
measurement unit (IMU; Xsens Technologies, NL), cus-
tom software, vibrotactile control circuit and four C2
tactors (Engineering Acoustics Inc., Casselberry, FL,
USA), and a virtual environment for displaying visual
biofeedback. The IMU measured angular displacements
and velocities in the A/P and M/L directions. Manufac-
turer specifications indicated a static accuracy better
than 0.5° and an angular resolution equalling 0.05°
(Xsens Technologies, NL). IMU signals were sampled at
a rate of 100 Hz. The tactor driving circuit (Fig. 1 (c))
generated sinusoidal signals to actuate the C2 tactors at
a frequency of 250 Hz and with peak-to-peak amplitude
of 200 μm [41]. The C2 tactor is a linear actuator with a
cylindrical moving contactor oscillating perpendicular to
the skin at the center with a cross-sectional area of
58.6 mm2. The IMU and tactors were attached with
Velcro to an elastic belt worn around the torso, as
shown in Fig. 2 (a). The IMU was placed on the lower
back at approximately the level of the L5/S1 vertebra
corresponding to the body’s COM. Four tactors were
placed on the skin over the front, back, and right and
left sides of the torso approximately at the level of the
L4/L5 vertebra.
Custom software that was implemented using Microsoft

Visual C++ generated the target movement trajectories in
degrees by measuring the participant’s 90 % of limits of
stability (LOS) in A/P and M/L directions, as illustrated in
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Fig. 2(b). Typically, the LOS has been used to indicate the
stable area in A/P and M/L directions over which people
can move their COM and maintain postural equilibrium
without changing their base of support. Movement speed
was set to 1 °/s, a preferred speed for dynamic weight-
shifting exercises in a clinical setting [42, 43]. A propor-
tional plus derivative control signal activated the tactors
based on differences in both body tilt angle and angular
velocity between the target and participant’s motions [44]:

Errorsignal ¼ ðθtarget−θparticipantÞ
þ Kdðθ˙target−θ˙participantÞ ð1Þ

where θ and θ˙ represented the body tilt angle in degrees
and the angular velocity of body tilt in °/ms, respectively.
Kdwas set to 0.5 ms based on a previous study [44].
Custom software provided command signals to activate
tactors when the absolute value of the error signal
exceeded the tactor activation threshold set at 1.0° [44].
Vibrotactile biofeedback was deactivated when the error
signal dropped below 1.0°, and thus the tactor activation
was binary in nature (either on or off ).
Similar to a computerized visual display of body sway,

two virtual objects were displayed in a virtual environ-
ment in order to indicate target and participant’s move-
ments, as illustrated in Fig. 1(d). A white and light blue
object moved according to the target movements gener-
ated by custom software and participant’s movement
measured by the IMU (i.e., body tilt with respect to the

base of support), respectively. For instance, A/P motion
of the measured participant’s body tilt was continuously
displayed as upward and downward motion of the vir-
tual object (i.e., light blue object), and M/L motion of
the measured participant’s body tilt was continuously
displayed as left and right motion of the virtual object
(i.e., light blue object). Likewise, the virtual object (i.e.,
white object) was continuously moved in the A/P or
M/L direction associated with generated movement tra-
jectories of the target. Each virtual object was continu-
ously displayed on a 52 inch monitor at an update rate
of 30 Hz [45].

Participants
Eleven idiopathic people with PD (70.0 ± 8.1 year; 2 females,
9 males), referred to as the “PD group”, having bilateral
symptoms with impaired postural stability (i.e., a score of 3
or 4 on the Hoehn and Yahr scale [46]) and nine healthy
elderly (67.8 ± 6.6 years; 7 females, 1 males) spouses of the
people with PD, referred to as the “control group”, partici-
pated. All participants were naïve to the purpose of the
experiment.
Potential participants (recruited from a movement disor-

ders clinic at the Methodist Neurological Institute, Houston,
Texas) were excluded if they: 1) could not read and com-
prehend English; 2) had difficulty standing for prolonged
periods (e.g., 10 min); 3) were unable to stand for 1 min
with their eyes open and closed; 4) had severe distal sensory
loss as demonstrated by a 5.07 g monofilament test (i.e., po-
tential participants who were unable to report a sensation

Fig. 1 A system configuration. a Sensing system. b Custom software. c C2 tactor and tactor control unit. d Visual biofeedback. A white and light
blue object depicts the target and participant’s movements in A/P and M/L directions
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of the monofilament more than three out of four times on
each foot (plantar surface of each great toe and plantar sur-
faces of the 1st, 3rd, and 5th metatarsal heads of each foot)
were excluded); 5) had limited ankle range of motion, dem-
onstrated ankle dorsiflexor/plantar flexor weakness, or
great toe weakness; 6) reported lower extremity fracture/
sprain in the past six months or previous lower extremity
total joint replacement; 7) were medically unstable (chest
pain upon exertion, dyspnea); 8) had active motion-
provoked vertigo or a diagnosed vestibular deficit; or 9) had
a cognitive level less than 24 determined by the Mini Men-
tal State Examination (MMSE) [47].
Each participant provided informed consent prior to

the start of the experimental procedures. The study was
conducted in accordance with the Helsinki Declaration
and approved by the Committee for the Protection of
Human Subjects at the University of Houston.

Procedure
All tests were conducted with people who had PD and
were taking medication to alleviate tremor, bradykinesia,

and muscle rigidity. Prior to beginning the experimental
session, participants’ balance performance was assessed
by the Sensory Organization Test (SOT) using a Balance
Master® (Balance Master®; NeuroCom, USA). The SOT,
which is commonly used to quantitatively assess the sen-
sory and voluntary motor control of balance during
standing, measures postural sway with two force plates
in response to visual and mechanical (moving platform)
perturbations [48, 49]. During the SOT, a safety harness
was used for all participants. Each of the six sensory
conditions in the SOT was randomly provided three
times for a total of 18 trials. Each trial was 20 s in dur-
ation with 20 s of rest between trials. The results of the
SOT were used to evaluate baseline balance performance
for the two groups.
At the beginning of the experimental session, all partici-

pants were instrumented with the IMU and four tactors.
Their LOS in both A/P and M/L directions were obtained
from body movements in degrees that corresponded to
the furthest deviations of the body tilt in each direction
from a neutral starting point. All participants performed

Fig. 2 a Sensor and tactor location. b Representative sample data from one participant with PD during the A/P dynamic weight-shifting exercise.
Images shown in the top panel indicate movement directions corresponding to the movement trajectories shown in the bottom panel. Solid blue
and red lines shown in the bottom panel represent the target motion (generated by custom software after measuring the participant’s 90 % of LOS in
the A/P direction) and participant’s motion, respectively. Dashed black lines represent the participant’s 90 % of LOS in both the anterior and
posterior directions
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12 familiarization trials (i.e., 3 modalities × 2 directions × 2
repetitions) to acclimate to the guidance modalities (vis-
ual, vibrotactile, and simultaneous visual and vibrotactile
biofeedback) during dynamic weight-shifting balance exer-
cises. After the completion of the familiarization trials, all
participants were provided a 5 min seated rest. During the
experimental session, all participants performed dynamic
weight-shifting balance exercises as a function of the mo-
dality and direction with 5 repetitions for a total of 30 tri-
als (i.e., 3 modalities × 2 directions × 5 repetitions). The
order of trials was randomized for each participant.
During all familiarization and experimental trials, par-

ticipants were asked to stand on a firm surface with their
arms held down at their sides and their feet hip-width
apart. They were instructed to move their bodies by
locking knees and hip joints (e.g., behaving as inverted
pendulums) during dynamic weight-shifting balance ex-
ercises. During trials involving vibrotactile biofeedback,
they were instructed to move the body in the direction
opposite the vibration until the vibration stopped. For
visual guidance (i.e., trials with visual or simultaneous
visual and vibrotactile biofeedback), they performed
exercises by looking at two virtual objects representing
their actual movements and target movements displayed
on a 52 inch monitor placed approximately 2 m ahead at
eye level. The duration of each trial was less than 45 s.
Consecutive trials were separated by approximately a
20 s rest period. All participants were provided a 5 min
seated rest after every 10 trials.
Following the completion of the experimental trials,

participants’ LOS in both A/P and M/L direction were
re-measured to evaluate the range of motion. After
each experimental trial, custom software stored the
dependent measures of target and participant angular
displacements and the two sets of LOS values in text
format for analysis.

Data analysis
MATLAB (The MathWorks, Natick, MA) was used to
process recorded data. A SOT score and range of LOS
in both A/P and M/L directions were used to evaluate
participants’ baseline balance performance and the ef-
fects of dynamic weight-shifting balance exercises, re-
spectively. The composite SOT score ranged between 0
and 100%. No movement resulted in a score of 100,
whereas a fall resulted in a score of 0. To characterize
participants’ ability to perform dynamic weight-shifting
balance exercises as a function of the guidance modality
and movement direction, position error was defined as
the average absolute difference between the target and
participant movements in degrees.
Levene’s test of equality of error variances verified that

three metrics (SOT score, range of LOS, and position
error) were normally distributed. An analysis of variance

(ANOVA) assessed the main and interaction effects for
all metrics. A one-way ANOVA assessed the main
effects of the group (PD and control) for the SOT score.
For the range of LOS, a three-way ANOVA assessed the
main effect of the group, exercise (pre- and post-
exercise), and direction (A/P and M/L) as well as their
interactions. For the position error, five repetitions of
each trial were averaged for each participant because the
effect of repetition was not significant as determined by
a repeated measures ANOVA. Therefore, the three-way
ANOVA assessed the main effects of the group, mo-
dality (visual, vibrotactile, and combined visual and
vibrotactile biofeedback), and direction as well as
their interactions. Post hoc analysis was performed
using Sidak’s method to determine the factors influen-
cing the main and interaction effects. The level of
significance was set at p < 0.05.

Results
Figure 3 illustrates the mean values of SOT scores for each
group. No significant differences as a function of the group
were observed in the SOT scores [F(1, 17) = 1.24, p = 0.28];
the PD group had a lower score (57.1) than the control
group (67.1).
Figure 4 shows the mean range of LOS as a function

of the direction (i.e., A/P and M/L) for each group.
Table 1 summarizes the results of the statistical analysis
for the range of LOS. The three-way ANOVA indicated
significant main effects of the exercise (p < 0.001) and
direction (p < 0.05), whereas the group and interaction
effects were not significant (p > 0.05). Indeed, the range
of participants’ LOS in both A/P and M/L directions im-
proved for both groups after the completion of the 30
experimental trials. For instance, the range of LOS corre-
sponding to the A/P direction increased by 64.17 % in the
PD group and 83.85 % in the control group. Similarly, the
range of LOS corresponding to the M/L direction

Fig. 3 Average SOT scores for the PD (n = 11) and control
(n = 9) group

Lee et al. Journal of NeuroEngineering and Rehabilitation  (2015) 12:75 Page 5 of 10



increased by 45.90 % in the PD group and 80.32 % in the
control group.
Table 2 shows that the three-way ANOVA applied to

the position error indicated significant main effects of
the group and modality, whereas the direction and inter-
action effects were not significant (p > 0.05). Figure 5
depicts the position error between the target and partici-
pant movements in both directions. A post hoc analysis
showed that all participants had the smallest position
error when they performed exercises with combined vis-
ual and vibrotactile biofeedback regardless of direction,
and that the control group had a smaller position error
than the PD group when they performed exercises with
either visual or vibrotactile biofeedback in the A/P direc-
tion. Other pairwise comparisons between visual and
vibrotactile biofeedback were not significant regardless
of group and direction.

Discussion
Our key finding is that both groups had the smallest pos-
ition error between the target and participant movements
when performing weight-shifting balance exercises accom-
panied by simultaneous delivery of visual and vibrotactile
biofeedback regardless of A/P and M/L directions; the in-
creased range of LOS in both directions occurred after the
completion of 30 experimental trials. The finding aligns
with recent studies noting that participants significantly
reduce position errors when mimicking the simple task of
slowly bending at the waist was combined with receiving
visual and vibrotactile biofeedback [50], and that vibrotac-
tile biofeedback enhances participants’ performance (dan-
cing) more than video instruction only [51].
It is generally accepted that sensory augmentation (bio-

feedback) provided by a technical display through a visual,
auditory, or tactile channel can enhance motor learning
and re-learning during rehabilitation [25]. Recent research
has reported that multimodal biofeedback can facilitate
motor learning more than unimodal biofeedback (see [52]
for an overview). Also, there is evidence that simultaneous
delivery of visual and vibrotactile biofeedback can be
effective for spatiotemporal learning during motor track-
ing tasks [52]. Moreover, the positive effects of concurrent
multimodal biofeedback during motor learning tasks have
been described as being facilitated by intersensory facilita-
tion [53] and increased cellular activity in the primary
sensorimotor cortex [53]. Hence, it is speculated that the
proposed system in this study would facilitate dynamic
movement coordination when participants in both

Fig. 4 Average range of LOS in the A/P and M/L direction as a function
of the group before and after dynamic weight-shifting balance exercises
guided by biofeedback. Error bars indicate standard error of the
corresponding average (* p < 0.05, ** p < 0.0001)

Table 1 Statistical analysis results of the range of LOS for group
(G), exercise (E), and direction (D) and their interaction

Dependent variable Effects DF F value Pr > F

Range of LOS G 1, 68 2.43 0.124

E 1, 68 33.97 <0.0001a

D 1, 68 4.54 0.037a

G × E 1, 68 1.49 0.266

G × D 1, 68 0.39 0.535

E × D 1, 68 0.75 0.390

G × E × D 1, 68 0.10 0.751
aStatistical significance

Table 2 Statistical analysis results of the cross-correlation and
position error for group (G), modality (M), and direction (D) and
their interaction

Dependent variable Effects DF F Value Pr > F

Cross-correlation G 1102 29.39 <0.0001a

M 2102 27.16 <0.0001a

D 1102 0.18 0.676

G × M 2102 2.79 0.126

G × D 1102 0.92 0.341

M × D 2102 0.38 0.689

G × M × D 2102 1.08 0.343

Position error G 1102 16.20 <0.0001a

M 2102 18.42 <0.0001a

D 1102 1.92 0.110

G × M 2102 0.85 0.432

G × D 1102 1.85 0.176

M × D 2102 0.78 0.462

G × M × D 2102 0.20 0.822
aStatistical Significance
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groups performed balance exercises with multimodal
biofeedback.
Research in the field of motor learning with biofeed-

back has extensively investigated visual information in
the context of optimizing biofeedback (see [52] for an
overview), given that vision dominates other sensory
channels, at least for perceiving spatial information [54].
The quasi-identical results between visual and vibrotac-
tile biofeedback in this study suggest that vibrotactile
biofeedback providing temporal aspects of the target
motion can allow participants to correct their movement
errors. This is in line with previous findings that touch
guidance facilitates movement timing in targeting tasks
[55, 56]. In the context of motion guidance, therefore,
vibrotactile can provide spatial properties of the move-
ment [57].
We also found that the control group produced sig-

nificantly better motion replication than the PD group
with only visual or only vibrotactile biofeedback in the
A/P direction. We attribute the finding to the greater
magnitude of A/P sway (i.e., the greater magnitude of
A/P sway can result in less accurate movement coord-
ination in people with PD [8–11]). Less accurate move-
ment coordination in the A/P direction also can be
associated with the slowness in movement initiation
(slow reaction time and movement time) in people with
PD compared to movement initiation in healthy people
[58]. However, we observed no significant group effects

with combined visual and vibrotactile biofeedback in A/P
and M/L directions. It can be interpreted that multimodal
biofeedback facilitates movement initiation more effectively
than unimodal (e.g., visual [59], auditory [60], or proprio-
ceptive [61]) biofeedback in people with PD, which con-
firms that the two groups in this study benefitted equally
from simultaneous visual and vibrotactile biofeedback.
No significant differences of the SOT scores between

the two groups were observed in the evaluation of base-
line balance performance. This finding may be attributed
to the differences in the gender distributions of the
groups. Multiple studies, however, have reported no gen-
der differences in balance parameters (e.g., postural
sway, sway area, sway path length, etc.) [62–65] and
equilibrium quotient scores on SOT 1–4 [66] in elderly
populations. Presumably, the quasi-identical SOT scores
between the people with PD and healthy elderly people
observed in this study can be related to postural inflex-
ibility (i.e., increased stiffness) in people with PD result-
ing in small postural sway as observed by Horak et al.
[67]. Indeed, our results and assumption are in line with
recent findings that overall SOT scores did not differ be-
tween people with PD in the on phase of the medication
cycle and healthy elderly people [68, 69].
Nevertheless, our study revealed that the two groups

significantly improved their range of LOS after performing
a single session of 30 trials with dynamic weight-shifting
balance exercises guided by biofeedback. The result

Fig. 5 Average position error as a function of the direction, modality, and group. Error bars indicate standard error of the corresponding average
(* p < 0.05, (** p < 0.001, ** p < 0.0001)
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confirms previous findings that dynamic balance exer-
cises involving shifting the body’s COM smoothly and
rhythmically improves balance performance in people
with a high risk of falling [42, 43].
The limitations of this proof-of-concept study are a

relatively small sample size, and an imbalanced gender
distribution within and between the groups. Despite the
limitations, the results confirm that combined visual
and vibrotactile biofeedback can improve volitional re-
sponses during postural tracking tasks. In addition, dy-
namic weight-shifting exercises guided by biofeedback
lead to postural stability improvements in people with
PD and elderly people.

Conclusion
This study describes the effects of guidance modalities
during dynamic weight-shifting exercises, which are com-
monly used in balance rehabilitation, in people with PD
and healthy elderly people. The results demonstrated the
superiority of simultaneous delivery of visual and vibrotac-
tile biofeedback over unimodal biofeedback (i.e., visual or
vibrotactile biofeedback) regardless of participant cohort.
A small number of biofeedback guided dynamic weight-
shifting balance exercises resulted in the increased range
of LOS in both A/P and M/L directions after removing
the biofeedback. We conclude that wearable technologies
incorporating visual and vibrotactile feedback can assist in
performing exercise regimens, potentially improving the
overall quality of life for people with PD and older adults.
Although recent advances in assistive technologies with

biofeedback have offered advantages for balance rehabili-
tation in balance-impaired people (e.g., older adults [30,
39], vestibular deficits [32, 39], and people with PD [27,
29, 35]), to date no technologies are readily available for
use in clinical and/or home-based settings. Future research
will explore multimodal biofeedback in a smartphone-
based system [31] to be used by balance-impaired people
when performing clinic and in-home rehabilitation and ex-
ercise regimens. To further understand the context in
which smartphone-based balance rehabilitation aids com-
bined with multimodal biofeedback can lead to steady im-
provements in balance performance for people with PD,
future research will conduct a longitudinal study with an
increased sample size, aged matched controls, and greater
balance across genders. Our eventual goal is to design a
system for in-home use that can augment balance re-
habilitation exercises and help to reduce healthcare
costs associated with therapeutic balance rehabilita-
tion programs for balance-impaired people.
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